Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Phytother Res ; 36(5): 2109-2115, 2022 May.
Article in English | MEDLINE | ID: covidwho-1858908

ABSTRACT

Respiratory viruses pose a significant threat to global health. They initially infect the naso- and oropharyngeal regions, where they amplify, cause symptoms, and may also be transmitted to new hosts. Preventing initial infection or reducing viral loads upon infection might soothe symptoms, prevent dissemination into the lower airways, or transmission to the next individual. Several natural products have well-described direct antiviral activity or may ameliorate symptoms of respiratory infections. We thus analyzed the potential of plant-derived products to inactivate respiratory viral pathogens and determined the antiviral activity of black chokeberry (Aronia melanocarpae [Michx.] Elliott), elderberry (Sambucus nigra L.), and pomegranate (Punica granatum L.) juice, as well as green tea (Camellia sinensis [L.] Kuntze) on the infectivity of the surrogate-modified vaccinia virus Ankara, and the respiratory viruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and adenovirus Type 5. Black chokeberry and pomegranate juice, and green tea reduced SARS-CoV-2 and IAV titers by ≥80% or ≥99%. This suggests that oral rinsing with these products may reduce viral loads in the oral cavity which might prevent viral transmission.


Subject(s)
COVID-19 , Orthomyxoviridae , Antiviral Agents/pharmacology , Humans , SARS-CoV-2 , Tea
2.
Front Chem ; 9: 638187, 2021.
Article in English | MEDLINE | ID: covidwho-1229167

ABSTRACT

Plant extracts are rich in bioactive compounds, such as polyphenols, sesquiterpenes, and triterpenes, which potentially have antiviral activities. As a consequence of the coronavirus disease 2019 pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, thousands of scientists have been working tirelessly trying to understand the biology of this new virus and the disease pathophysiology, with the main goal of discovering effective preventive treatments and therapeutic agents. Plant-derived secondary metabolites may play key roles in preventing and counteracting the rapid spread of SARS-CoV-2 infections by inhibiting the activity of several viral proteins, in particular those involved in the virus entry into the host cells and its replication. Using in vitro approaches, we investigated the role of a pomegranate peel extract (PPE) in attenuating the interaction between the SARS-CoV-2 Spike glycoprotein and the human angiotensin-converting enzyme 2 receptor, and on the activity of the virus 3CL protease. Although further studies will be determinant to assess the efficacy of this extract in vivo, our results opened new promising opportunities to employ natural extracts for the development of effective and innovative therapies in the fight against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL